MARGSHREE CLASSES® PVT. LTD. **IIT-JEE / NEET / FOUNDATION (IX &X)** Time: 2 hours Marks: 50 Maths (Trigonometry function and complex number) NAME OF THE STUDENT:-DATE:-INSTRUCTION - ATTEMPT ALL QUESTIONS If $\tan x = \frac{m}{m+1}$, If $\tan \beta = \frac{m}{2m+1}$ than prove that $X + \beta = \frac{\pi}{4}$ Q.1. Find the value Q.2. (a) $\frac{\tan(90-\theta)\sec(180-\theta)\sin(-\theta)}{\sin(180+\theta)\cot(360-\theta)\csc(90-\theta)}$ $\frac{\cos(2\pi+\theta)\csc(2\pi+\theta)\tan\left(\frac{\pi}{2}+\theta\right)}{\sec\left(\frac{\pi}{2}+\theta\right)\cos\theta\cot(\pi+\theta)}$ (b) Find the value of Q.3. (a) cos 15° (b) sin 75° (c) tan 75° Find the general solution -Q.4. (a) $\cot^2\theta + \frac{3}{\sin\theta} + 3 = 0$ (b) $tan\theta + tan2\theta + tan\theta tan2\theta = 1$ Solve the trigonometric equation :-Q.5. (a) $7\cos^2 \theta + 3\sin^2 \theta = 4$ If $0 \le x \le 2\pi$, find $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$ when Q.6. (a) $\cos x = -\frac{1}{3}$, x lies in quadrant III (b) sin x = $\frac{\sqrt{5}}{3}$, x lies in quadrant II Q.7. find the principal and general solutions of the equations -(b) cos x = $\frac{1}{2}$ (a) tan x = $\sqrt{3}$

Q.8. Let $\cos(x + \beta) = \frac{4}{5}$ and $\sin(x - \beta) = \frac{5}{15}$

where $0 \le X$, $\beta \le \frac{\pi}{4}$, than tan 2x = ??

Q.9. If $0 \le x \le 2\pi$, than find real value of x, which satisfy the equation

 $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$

- Q.10. If $U = \sqrt{a^2 cos^2 \theta + b^2 sin^2 \theta} + \sqrt{a^2 sin^2 \theta + b^2 cos^2 \theta}$ than find the difference between maximum and minimum value of u^2 ?
- Q.11. If Z is complex number such that |Z| = 1 prove that $\left(\frac{Z-1}{Z+1}\right)$ is purely imaginary
- Q.12. If $(1 + i) (1 + 2i) (1 + 3i) \dots (1 + ni) = x + iy$ show that 2.5.10...... $(1 + n^2) = x^2 + y^2$
- Q.13. If x and β are different complex number with $|\beta| = 1$ find $\frac{\beta x}{1 \overline{x}\beta}$
- Q.14. Evaluable:-

(a)
$$(1 + i)^6 + (1 - i)^3$$
 (b) $[i^{18} + (\frac{1}{i})^{25}]$

- Q.15. If x -iy = $\sqrt{\frac{a-ib}{c-id}}$ than prove that $(x^2 + y^2)^2 = \frac{a^2 + b^2}{c^2 + d^2}$
- Q.16. Convert the complex number

$$Z = \frac{i-1}{\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)}$$
 in the polar form.

Q.17. Find the square root of following complex number

(b) 12 -5i

- Q.18. If a = cos θ + isin θ , find the value of $\left(\frac{1+a}{1-a}\right)$ =?
- Q.19. Let z_1 and z_2 be two complex numbers satisfying $|z_1| = 9$ and $|z_2| |3| |4i| = 4$ then the minimum value of $|z_1 z_2|$ is _____?
- Q.20. find the value of

$$\left(\frac{1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}}{1+\sin\frac{2\pi}{9}-i\cos\frac{2\pi}{9}}\right)^3$$