MARGSHREE GLASSESPVT.LTD.

IIT-JEE / NEET / FOUNDATION (IX \&X)

Time: 2 hours

Math | IIT-JEE

Marks: 50
(Straight line, Circles \& Sequence serial)
NAME OF THE STUDENT:- \qquad -

DATE:-

INSTRUCTION - ATTEMPT ALL QUESTIONS

Q.1. For $a>b>c>0$ the distance between (I.I) and the point of intersection of the lines $a x+b y+c=o$ and $b x+a y+c=o$ is less than $\sqrt[2]{2}$ then
(a) $a+b-c>0$
(b) $a-b+c<0$
(c) $a-b+c>0$
(d) $a+b-c>0$
Q.2. For a point pin the plane, let $d_{1}(p)$ and $d_{2}(p)$ be the distance of the point P from the lines $x-y=0$ and $x+y=0$ respectively. The area of the region R consisting of all points P tying in the first quadrant of the plane and satisfying $2<d_{1}(p)+d_{2}(p)<4$ is \qquad ---
Q.3. The locus of the mid - point of the perpendiculars drown from points on the line $x=2 y$ to the line $x=y$ is \qquad
(a) $2 x-3 y=0$
(b) $5 x-7 y=0$
(c) $3 x-2 y=0$
(d) $7 x-5 y=0$
Q.4. A straight line L at a distance of 4 units from the origin makes positive internets on the coordinate axes and the perpendicular from the origin to this line makes an angle of 60° with the live $x+y=0$ then an equation of the live
(a) $x+\sqrt{3} y=8$
(b) $(\sqrt{3}+1) x+(\sqrt{3}-1) y=8 \sqrt{2}$
(c) $\sqrt{3} x+y=8$
(d) none of these
Q.5. Find the value of m^{2} for which the lines joining origin to the point of intersection of $y=m x-1$ with $x^{2}+4 x y+3 y^{2}-1=0$ are perpendicular to each other.
Q.6. The number of integral value of K for which the line $3 x+4 y=K$ intersects the circle $x^{2}+y^{2}-$ $2 x-4 y+4=0$ at two distance point is \qquad
Q.7. If $a 2 b>0$ then the positive value of m for which $y=m x-b \sqrt{1+m^{2}}$ is a common tangent to $x^{2}+y^{2}=b^{2}$ and $(x-a)^{2}+y^{2}=b^{2}$ is
(a) $\frac{2 b}{\sqrt{a^{2}-4 b^{2}}}$
(b) $\frac{\sqrt{a^{2}-4 b^{2}}}{2 b}$
(c) $\frac{2 b}{a-2 b}$
(d) $\frac{b}{a-2 b}$
Q.8. Let the point B be the reflection of the point $A(2,3)$ with respect to the line $8 x-6 y-23=0$ Let T_{A} and T_{B} be circles of radii 2 and 1 with centres A and B respectively. Let T be a common tangent to the circles T_{A} \& T_{B} such that both the circles are on the same side of T. If c is the point of intersection of T and the line segment $A C$ is \qquad
Q.9. A circle is given by $x^{2}+(y-1)^{2}=1$ another circle c touches it externally and also the x-axis, then the locus of its centre is
(a) $\left\{(x, y): x^{2}=4 y\right\} \cup\{(x, y) ; y \leq 0\}$
(b) $\left\{(x, y): x^{2}+(y-1)^{2}=4\right\} \cup\{(x, y) ; y \leq 0\}$
(c) $\left\{(x, y): x^{2}=y\right\} \cup\{(o, y) ; y \leq 0\}$
(d) $\left\{(x, y): x^{2}=4 y\right\} \cup\{(0, y) ; y \leq 0\}$
Q.10. If one of the diameters of the circle given by the equation, $x^{2}+y^{2}+4 x+6 y-12=0$: is a chord of a circle 5 , whose centre is at $(-3,2)$ then the radius of $5 \ldots$?
Q.11. If m arithmetic means (AMs) and three geometric means (G.Ms) are inserted between 3 and 243 such that $4^{\text {th }}$ am is equal to $2^{\text {nd }} 4 \mathrm{~m}$ then m is equal to \qquad
Q.12. Let m be the minimum possible value of lof 3 (3)
Q.13. Let m be the minimum possible value of $\log _{3}\left(3^{v_{1}}+3^{y_{2}}+3^{v_{3}}\right)$. where y_{1}, y_{2}, y_{3} are real numbers for which $y_{1}+y_{2}+y_{3}=9$. Let M be the maximum possible value of $\left(\log _{3} x_{1}+\log _{3} x_{2}\right.$ $+\log _{3} x_{3}$), where x_{1}, x_{2}, x_{3} are positive real number for which $x_{1}+x_{2}+x_{3}=9$. Then the value of $\log _{2}\left(m^{3}\right)+\log _{3}\left(M^{2}\right)$ is \qquad
Q.14. A straight line through the vertex P of a triangle $P Q R$ intersects the side $Q R$ at the point S and circumcircle of the triangle $P Q R$ at the point T. IF S is not the centre of circumcircle, then
(a) $\frac{1}{P S}+\frac{1}{S T}<\frac{2}{\sqrt{Q S \times S R}}$
(b) $\frac{1}{P S}+\frac{1}{S T}>\frac{2}{\sqrt{Q S \times S R}}$
(c) $\frac{1}{P S}+\frac{1}{S T}<\frac{4}{Q R}$
(d) $\frac{1}{P S}+\frac{1}{S T}>\frac{4}{Q R}$
Q.15. Let $a_{1}, a_{2}, a_{3} \ldots$. be a sequence of positive integers in arithmetic progression with common difference 2. Also let $b_{1}, b_{2}, b_{3} \ldots$. . be a sequence of positive integers in geometric progression with common ratio 2 . If $a_{1}=b_{1}=c$, then the number of all possible values of c,
for with equality

$$
2\left(a_{1}+a_{2}+\ldots+a_{n}\right)=b_{1}+b_{2}+\ldots+b_{n}
$$

Holds for some positive integer n, is \qquad
Q.16. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive integers such that $\frac{b}{a}$ is an integer If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in geometric progression and the arithmetic mean of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is $\mathrm{b}+2$ the value of $\frac{a^{2}+a-14}{a+1}$ is
Q.17. Let a, b, c, d be real number in G.P. If u, v, w, satisfy the system of equation
$u+2 v+3 w=6$
$4 u+5 v+6 w=12$
$6 u+9 v=4$
then show that the roots of the equation
$\left(\frac{1}{u}+\frac{1}{v}+\frac{1}{w}\right) x^{2}$

$$
+\left[(b-c)^{2}+(c-a)^{2}+(d-b)^{2}\right] x+u+v+w=0
$$

and $20 x^{2}+10(a-d)^{2} x-9=0$ are reciprocals of each other
Q.18. If $\mathrm{S}_{1}, \mathrm{~S}_{2} \mathrm{~S}_{3}$. . \qquad S_{n} are the sums of infinite geometric series whose first terms are 1, 2, 3, \qquad n and whose common ratios are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$, \qquad $\frac{1}{n+1}$ respectively, then find the value of $S_{1}{ }^{2}+S_{2}{ }^{2}+S_{3}{ }^{2}+$ \qquad $+S_{2 n-1}^{2}$
 $+\mathrm{S}_{2 \mathrm{n}-1}$

