

- (a) $x + \sqrt{3} y = 8$ (b) $(\sqrt{3} + 1) x + (\sqrt{3} 1) y = 8 \sqrt{2}$ (c) $\sqrt{3} x + y = 8$ (d) none of these
- Q.5. Find the value of m^2 for which the lines joining origin to the point of intersection of y = mx-1 with $x^2 + 4xy + 3y^2 1 = 0$ are perpendicular to each other.

- Q.6. The number of integral value of K for which the line 3x + 4y = K intersects the circle $x^2 + y^2 2x 4y + 4 = 0$ at two distance point is _____
- Q.7. If a 2b>0 then the positive value of m for which y = mx b $\sqrt{1 + m^2}$ is a common tangent to $x^2 + y^2 = b^2$ and $(x a)^2 + y^2 = b^2$ is

(a) $\frac{2b}{\sqrt{a^2 - 4b^2}}$ (b) $\frac{\sqrt{a^2 - 4b^2}}{2b}$ (c) $\frac{2b}{a - 2b}$ (d) $\frac{b}{a - 2b}$

- Q.8. Let the point B be the reflection of the point A (2,3) with respect to the line 8x 6y 23 = 0Let T_A and T_B be circles of radii 2 and 1 with centres A and B respectively. Let T be a common tangent to the circles $T_A \& T_B$ such that both the circles are on the same side of T. If c is the point of intersection of T and the line segment AC is _____
- Q.9. A circle is given by $x^2 + (y-1)^2 = 1$ another circle c touches it externally and also the x-axis, then the locus of its centre is

(a) {(x,y): $x^2 = 4y$ }U { (x,y); $y \le 0$ }

(b) {(x,y): $x^2 + (y-1)^2 = 4$ } U { (x,y); $y \le 0$ }

(c) {(x,y): $x^2 = y$ }U { (o,y); $y \le 0$ }

(d) {(x,y): x² = 4y}∪ { (o,y);y ≤0 }

- Q.10. If one of the diameters of the circle given by the equation, $x^2 + y^2 + 4x + 6y 12 = 0$: is a chord of a circle 5, whose centre is at (-3,2) then the radius of 5____?
- Q.11. If m arithmetic means (AMs) and three geometric means (G.Ms) are inserted between 3 and 243 such that 4th am is equal to 2nd 4m then m is equal to _____
- Q.12. Let m be the minimum possible value of lof 3 (3)
- Q.13. Let m be the minimum possible value of $\log_3 (3^{y_1} + 3^{y_2} + 3^{y_3})$. where y_1 , y_2 , y_3 are real numbers for which $y_1 + y_2 + y_3 = 9$. Let M be the maximum possible value of $(\log_3 x_1 + \log_3 x_2 + \log_3 x_3)$, where x_1 , x_2 , x_3 are positive real number for which $x_1 + x_2 + x_3 = 9$. Then the value of $\log_2(m^3) + \log_3(M^2)$ is _____
- Q.14. A straight line through the vertex P of a triangle PQR intersects the side QR at the point S and circumcircle of the triangle PQR at the point T. IF S is not the centre of circumcircle, then

(a)
$$\frac{1}{PS} + \frac{1}{ST} < \frac{2}{\sqrt{QS \times SR}}$$

(b) $\frac{1}{PS} + \frac{1}{ST} > \frac{2}{\sqrt{QS \times SR}}$
(c) $\frac{1}{PS} + \frac{1}{ST} < \frac{4}{QR}$
(d) $\frac{1}{PS} + \frac{1}{ST} > \frac{4}{QR}$

Q.15. Let a_1 , a_2 , a_3 be a sequence of positive integers in arithmetic progression with common difference 2. Also let b_1 , b_2 , b_3 be a sequence of positive integers in geometric progression with common ratio 2. If $a_1 = b_1 = c$, then the number of all possible values of c,

for with equality

$$2(a_1 + a_2 + ... + a_n) = b_1 + b_2 + ... + b_n$$

Holds for some positive integer n, is_____

- Q.16. Let a, b, c be positive integers such that $\frac{b}{a}$ is an integer If a,b,c are in geometric progression and the arithmetic mean of a, b, c is b + 2 the value of $\frac{a^2+a-14}{a+1}$ is
- Q.17. Let a, b, c, d be real number in G.P. If u, v, w, satisfy the system of equation

u + 2v + 3w = 6 4u + 5v + 6w = 12 6u + 9v = 4then show that the roots of the equation

 $\left(\frac{1}{u} + \frac{1}{v} + \frac{1}{w}\right) x^{2}$ +[(b-c)² + (c - a)² + (d - b)²] x + u + v + w = 0 and 20x² + 10 (a - d)² x - 9 =0 are reciprocals of each other

Q.18. If S₁, S₂ S₃,, S_n are the sums of infinite geometric series whose first terms are 1, 2, 3, _____, n and whose common ratios are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, _____ $\frac{1}{n+1}$ respectively, then find the value of S₁² + S₂² + S₃² + _____ + S²_{2n-1}