TM
 MARGGHREECLAGGES

IIT-JEE / NEET / FOUNDATION (IX \&

Time: 3 hours
SUBJECT - MATH (IIT-JEE)
(Straight line)
NAME OF STUDENT:- \qquad DATE:-/...../...........

INSTRUCTION:- ATTEMT ALL QUESTION.

Q1. The x-coordinate of the incentre of the triangle that has the coordinates of mid-points of its sides as $(0,1),(1,1)$ and $(1,0)$ is.
(a) $2+\sqrt{2}$
(b) $2-\sqrt{2}$
(c) $1+\sqrt{2}$
(d) $1-\sqrt{2}$

Q2. Let $O(0,0), P(3,4)$ and $Q(6,0)$ be the vertices of a $\triangle O P Q$. the point R inside the $\triangle O P Q$ is such that the triangles OPR, PQR, and OQR are of equal area. The coordinates of R are.
(a) $\left(\frac{4}{3}, 3\right)$
(b) $\left(3, \frac{2}{3}\right)$
(c) $\left(3, \frac{4}{3}\right)$
(d) $\left(\frac{4}{3}, \frac{2}{3}\right)$

Q3. The incentre of the triangle with vertices $(1, \sqrt{3}),(0,0)$ and $(2,0)$ is
(a) $\left(1, \frac{\sqrt{3}}{2}\right)$
(b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
(c) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
(d) $\left(1, \frac{1}{\sqrt{3}}\right)$

Q4. Suppose that the points $(h, k),(1,2)$ and $(-3,4)$ lie on the line L_{1}. If a line L_{2} passing through the point (h, k) and $(4,3)$ is perpendicular to L_{1}, then $\frac{k}{h}$ equals.
(a) $\frac{-1}{7}$
(b) $\frac{1}{3}$
(c) 3
(d) 0

[^0]Q5. If the straight line $2 x-3 y+17=0$ is perpendicular to the line passing through the points $(7,17)$ and $(15, \beta)$ then β equals
(a) $\frac{35}{3}$
(b) -5
(c) $\frac{-35}{3}$
(d) 5

Q6. A triangle has a vertex at $(1,2)$ and the mid-points of the two sides through it are $(-1,1)$ and $(2,3)$. Then the centroid of this triangle is.
(a) $\left(1, \frac{7}{3}\right)$
(b) $\left(\frac{1}{3}, 2\right)$
(c) $\left(\frac{1}{3}, 1\right)$
(d) $\left(\frac{1}{3}, \frac{5}{3}\right)$
$\mathbf{Q 7}$. A point \mathbf{P} moves on the line $2 x-3 y+4=0$. If $\mathbf{Q}(\mathbf{1}, \mathbf{4})$ and $\mathbf{R}(\mathbf{3},-\mathbf{2})$ are fixed points, then the locus of the centroid of $\triangle P Q R$ is a line
(a) With slope $\frac{2}{3}$
(b) With slope $\frac{3}{2}$
(c) parallel to y - axis
(d) parallel to x-axis

Q8. The set of all possible values of θ in the interval $(0, \lambda)$ for which the points $(1,2)$ and $(\sin \theta, \cos \theta)$ lie on the same side of the line $x+y=1$ is.
(a) $\left(0, \frac{x}{2}\right)$
(b) $\left(\frac{\lambda}{4}, \frac{3 \lambda}{4}\right)$
(c) $\left(0, \frac{3 \lambda}{4}\right)$
(d) $\left(0, \frac{\lambda}{4}\right)$

Q9. Slope of a line passing through $\mathbf{P}(\mathbf{2}, \mathbf{3})$ and intersecting the line $x+y=7$ at a distance of 4 units from P is.
(a) $\frac{1-\sqrt{5}}{1+\sqrt{5}}$
(b) $\frac{\sqrt{7}-1}{\sqrt{7}+1}$
(c) $\frac{1-\sqrt{7}}{1+\sqrt{7}}$
(d) $\frac{\sqrt{5}-1}{\sqrt{5}+1}$

Q10. If in a parallelogram $A B C D$ the coordinate of A, B and C are respectively $(1,2),(3,4)$ and $(2,5)$ then the equation of the diagonal $A D$ is
(a) $3 x+5 y-13=0$
(b) $3 x-5 y+7=0$
(c) $5 x-3 y+1=0$
(d) $5 x+3 y-11=0$

Q11. If $P S$ is the median of the triangle with vertices $P(2,2) Q(6,-1)$ and $R(7,3)$ then equation of the line passing through ($1,-1$) and parallel to $P S$ is

[^1](a) $4 x-7 y-11=0$
(b) $2 x+9 y+7=0$
(c) $4 x+7 y+3=0$
(d) $2 x-9 y-11=0$

Q12. If a straight line passing through the point $\mathrm{P}(-3,4)$ is such that its intercepted portion between the coordinate axis is bisected at P , then its equation is
(a) $x-y+7=0$
(b) $4 x-3 y+24=0$
(c) $8 x-4 y+25=0$
(d) $4 x+3 y=0$

[^0]: MARGSHREE CLASSES DELHI FOR IIT-JEE /PMT(NEET) / FOUNDATION
 CONT: -01142603337, 8527672622, 9711334982
 VISIT US : www.margshree.com / www.margshree.org

[^1]: MARGSHREE CLASSES DELHI FOR IIT-JEE /PMT(NEET) / FOUNDATION
 CONT: -01142603337, 8527672622, 9711334982
 VISIT US: www.margshree.com / www.margshree.org

