

Time: 3 hours

<u>SUBJECT – MATH (IIT-JEE)</u>

Marks: 50

(Straight line)

NAME OF STUDENT:-

DATE:-/..../.....

✤ INSTRUCTION:- ATTEMT ALL QUESTION.

- Q1. The *x*-coordinate of the incentre of the triangle that has the coordinates of mid-points of its sides as (0,1),(1,1) and (1,0) is.
 - (a) $2 + \sqrt{2}$ (b) $2 \sqrt{2}$ (c) $1 + \sqrt{2}$ (d) $1 \sqrt{2}$
- Q2. Let O(0,0), P(3,4) and Q(6,0) be the vertices of a △OPQ. the point R inside the △OPQ is such that the triangles OPR, PQR, and OQR are of equal area. The coordinates of R are.

(a)
$$\left(\frac{4}{3}, 3\right)$$
 (b) $\left(3, \frac{2}{3}\right)$ (c) $\left(3, \frac{4}{3}\right)$ (d) $\left(\frac{4}{3}, \frac{2}{3}\right)$

Q3. The incentre of the triangle with vertices (1, $\sqrt{3}$), (0,0) and (2,0) is

(a)
$$\left(1, \frac{\sqrt{3}}{2}\right)$$
 (b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$ (c) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$ (d) $\left(1, \frac{1}{\sqrt{3}}\right)$

Q4. Suppose that the points (h,k) , (1,2) and (-3,4) lie on the line L₁. If a line L₂ passing through the point (h,k) and (4,3) is perpendicular to L₁, then $\frac{k}{h}$ equals.

(a)
$$\frac{-1}{7}$$
 (b) $\frac{1}{3}$ (c) 3 (d) 0

MARGSHREE CLASSES DELHI FOR IIT-JEE /PMT(NEET) / FOUNDATION CONT: -01142603337, 8527672622, 9711334982 VISIT US : <u>www.margshree.com</u> / www.margshree.org

- Q5. If the straight line 2x 3y + 17 = 0 is perpendicular to the line passing through the points (7,17) and (15, β) then β equals
 - (a) $\frac{35}{3}$ (b) 5 (c) $\frac{-35}{3}$ (d) 5
- Q6. A triangle has a vertex at (1,2) and the mid-points of the two sides through it are (-1,1) and (2,3). Then the centroid of this triangle is.
 - (a) $\left(1, \frac{7}{3}\right)$ (b) $\left(\frac{1}{3}, 2\right)$ (c) $\left(\frac{1}{3}, 1\right)$ (d) $\left(\frac{1}{3}, \frac{5}{3}\right)$
- Q7. A point P moves on the line 2x 3y + 4 = 0. If Q(1,4) and R(3,-2) are fixed points, then the locus of the centroid of Δ PQR is a line
 - (a) With slope $\frac{2}{3}$ (b) With slope $\frac{3}{2}$ (c) parallel to y axis(d) parallel to x axis
- Q8. The set of all possible values of θ in the interval (0, λ) for which the points (1,2) and $(sin\theta, cos\theta)$ lie on the same side of the line x + y = 1 is.
 - (a) $\left(0, \frac{\lambda}{2}\right)$ (b) $\left(\frac{\lambda}{4}, \frac{3\lambda}{4}\right)$ (c) $\left(0, \frac{3\lambda}{4}\right)$ (d) $\left(0, \frac{\lambda}{4}\right)$
- Q9. Slope of a line passing through P (2,3) and intersecting the line x + y = 7 at a distance of 4 units from P is.
 - (a) $\frac{1-\sqrt{5}}{1+\sqrt{5}}$ (b) $\frac{\sqrt{7}-1}{\sqrt{7}+1}$ (c) $\frac{1-\sqrt{7}}{1+\sqrt{7}}$ (d) $\frac{\sqrt{5}-1}{\sqrt{5}+1}$
- Q10. If in a parallelogram ABCD the coordinate of A,B and C are respectively (1,2), (3,4) and (2,5) then the equation of the diagonal AD is
 - (a) 3x + 5y 13 = 0(b) 3x - 5y + 7 = 0(c) 5x - 3y + 1 = 0(d) 5x + 3y - 11 = 0
- Q11. If PS is the median of the triangle with vertices P(2,2) Q(6,-1) and R(7,3) then equation of the line passing through (1,-1) and parallel to PS is

- (a) 4x 7y 11 = 0 (b) 2x + 9y + 7 = 0
- (c) 4x + 7y + 3 = 0 (d) 2x 9y 11 = 0
- Q12. If a straight line passing through the point P(-3,4) is such that its intercepted portion between the coordinate *axis* is bisected at P, then its equation is
 - (a) x y + 7 = 0 (b) 4x 3y + 24 = 0
 - (c) 8x 4y + 25 = 0

(d) 4x + 3y = 0

MARGSHREE CLASSES DELHI FOR IIT-JEE /PMT(NEET) / FOUNDATION CONT: -01142603337, 8527672622, 9711334982 VISIT US : <u>www.margshree.com</u> / www.margshree.org