

IIT-JEE / NEET / FOUNDATION (IX &X)

Time: 2 hours

Chemistry

Marks: 50

(Chemical kinetics)

NAME OF THE STUDENT:-

DATE:-

INSTRUCTION - ATTEMPT ALL QUESTIONS

Q.1. For the chemical reaction,

 $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ the correct options is

(a)
$$3 \frac{d[\mathbf{H}_2]}{dt} = 2 \frac{d[\mathbf{NH}_3]}{dt}$$

(b)
$$-\frac{1}{3} \frac{d[\mathbf{H}_2]}{dt} = -\frac{1}{2} \frac{d[\mathbf{NH}_3]}{dt}$$

(c)
$$-\frac{d[\mathbf{N}_2]}{dt} = 2 \frac{d[\mathbf{NH}_3]}{dt}$$

(d)
$$-\frac{d[\mathbf{N}_2]}{dt} = \frac{1}{2} \frac{d[\mathbf{NH}_3]}{dt}$$

Q.2. The rate of the reaction : $2N_2O_5 \rightarrow 4NO_2 + O_2$ can be written in three ways.

$$\frac{-d [N_2 O_5]}{dt} = k[N_2 O_5] \qquad \frac{-d [NO_2]}{dt} = k'[N_2 O_5]; \qquad \frac{d [O_2]}{dt} = k''[N_2 O_5]$$

The relationship between k and k' and between k and k " are

(a)
$$K' = 2k, K'' = k$$

(b) $k' = 2k, k'' = k/2$
(c) $k' = 2k, k'' = 2k$
(d) $k' = k, k'' = k$

- Q.3. For the reaction $N_2O_{5(g)} \rightarrow 2NO_{2(g)} + 1/2O_{2(g)}$ the value of rate of disappearance of N_2O_5 is given as 6.25×10^{-3} mol L⁻¹s⁻¹. The rate of formation of NO₂ and O₂ is given respectively as:
 - (a) $6.25\times10^{\text{-3}}$ mol $L^{\text{-1}}\text{s}^{\text{-1}}$ and $6.25\times10^{\text{-3}}$ mol $L^{\text{-1}}\text{s}^{\text{-1}}$
 - (b) $1.25\times10^{^{-2}}\,\text{mol}\,\text{L}^{^{-1}\text{s}^{^{-1}}}$ and $3.125\times10^{^{-3}}\,\text{mol}\,\text{L}^{^{-1}\text{s}^{^{-1}}}$
 - (c) 6.25×10^{-3} mol L⁻¹s⁻¹ and 3.125×10^{-3} mol L⁻¹s⁻¹
 - (d) 1.25 \times 10 $^{-2}$ mol L $^{-1}\text{s}^{-1}$ and 6.25 \times 10 $^{-3}$ mol L $^{-1}\text{s}^{-1}$

Q.4. For the reaction, $N_2 + 3H_2 \rightarrow 2NH_3$, if $\frac{d[NH_3]}{dt} = 2 \times 10^{-4} \text{ mol } L^{-1}s^{-1}$, the value of $\frac{-d[H_2]}{dt}$ would be (a) $4 \times 10^{-4} \text{ mol } L^{-1}s^{-1}$ (b) $6 \times 10^{-4} \text{ mol } L^{-1}s^{-1}$ (c) $1 \times 10^{-4} \text{ mol } L^{-1}s^{-1}$ (d) $3 \times 10^{-4} \text{ mol } L^{-1}s^{-1}$

Q.5. In the reaction

$$\operatorname{BrO}_{3(aq)}^{-} + 5\operatorname{Br}_{(aq)}^{-} + 6\operatorname{H}_{(aq)}^{+} \operatorname{3Br}_{2(l)}^{-} + 3\operatorname{H}_{2(l)}^{O}$$

The rate of appearance of bromine (Br_2) is related to rate of disappearance of bromide ions as

(a)
$$\frac{d[\mathbf{Br}_2]}{dt} = -\frac{5}{3} \frac{d[\mathbf{Br}^-]}{dt}$$
 (b)
$$\frac{d[\mathbf{Br}_2]}{dt} = \frac{5}{3} \frac{d[\mathbf{Br}^-]}{dt}$$

(c)
$$\frac{d[\mathbf{Br}_2]}{dt} = \frac{3}{5} \frac{d[\mathbf{Br}^-]}{dt}$$
 (d)
$$\frac{d[\mathbf{Br}_2]}{dt} = -\frac{3}{5} \frac{d[\mathbf{Br}^-]}{dt}$$

Q.6. Consider the reaction :

$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$

The equality relationship between

$$\frac{d[\mathbf{NH}_{3}]}{dt} \text{ and } -\frac{d[\mathbf{H}_{2}]}{dt} \text{ is}$$
(a) $\frac{d[\mathbf{NH}_{3}]}{dt} = -\frac{d[\mathbf{H}_{2}]}{dt}$
(b) $\frac{[\mathbf{NH}_{3}]}{dt} = -\frac{1}{3}\frac{d[\mathbf{H}_{2}]}{dt}$
(c) $+\frac{d[\mathbf{NH}_{3}]}{dt} = -\frac{2}{3}\frac{d[\mathbf{H}_{2}]}{dt}$
(d) $+\frac{d[\mathbf{NH}_{3}]}{dt} = -\frac{2}{2}\frac{d[\mathbf{H}_{2}]}{dt}$

Q.7. For the reaction, $2A + B \rightarrow 3C + D$, which of the following does not express the reaction rate?

(a)
$$-\frac{d[A]}{2dt}$$
 (b) $-\frac{d[C]}{3dt}$ (c) $-\frac{d[B]}{dt}$ (d) $\frac{d[D]}{dt}$

Q.8.
$$3A \rightarrow 2B$$
, rate of reaction $\frac{+d[B]}{dt}$ is equal to

(a)
$$-\frac{3d[A]}{2dt}$$
 (b) $-\frac{2d[A]}{3dt}$ (c) $-\frac{1d[A]}{3dt}$ (d) $+2\frac{d[A]}{dt}$

Q.9. For the reaction

 $H^{+} + BrO_3 + 3Br^{-} - - 5Br_2 + H_2O$

which of the following relations correctly represents the consumption and formation of products?

(a)
$$\frac{d[Br-]}{dt} = -\frac{3d[Br_2]}{5dt}$$
 (b) $\frac{d[Br-]}{dt} = -\frac{3d[Br_2]}{5dt}$
(c) $\frac{d[Br-]}{dt} = -\frac{5d[Br_2]}{3dt}$ (d) $\frac{d[Br-]}{dt} = -\frac{5d[Br_2]}{3dt}$

Q.10. For the reaction $H_{2(g)} + I_{2(g)} 2H_{(g)}$, the rate of reaction is expressed as

(a)
$$\frac{\Delta \begin{bmatrix} \mathbf{H}_2 \end{bmatrix}}{\Delta t} = \frac{\mathbf{1} \Delta \begin{bmatrix} \mathbf{I}_2 \end{bmatrix}}{\mathbf{2} \Delta t} = -\frac{\Delta \begin{bmatrix} \mathbf{H} \mathbf{I} \end{bmatrix}}{\Delta t}$$

(b)
$$-\frac{\Delta \begin{bmatrix} \mathbf{I}_2 \end{bmatrix}}{\Delta t} = -\frac{\Delta \begin{bmatrix} \mathbf{H}_2 \end{bmatrix}}{\Delta t} = \frac{\mathbf{1} \Delta \begin{bmatrix} \mathbf{H} \mathbf{I} \end{bmatrix}}{\mathbf{2} \Delta t}$$

(c)
$$\frac{\Delta \begin{bmatrix} \mathbf{I}_2 \end{bmatrix}}{\Delta t} = \frac{\Delta \begin{bmatrix} \mathbf{H}_2 \end{bmatrix}}{\Delta t} = \frac{\Delta \begin{bmatrix} \mathbf{H} \mathbf{I} \end{bmatrix}}{\mathbf{2} \Delta t}$$

(d) none of these.

