MARGSHREE GLASSESPVT.LTD.

IIT-JEE / NEET / FOUNDATION (IX \&X)

Time: 2 hours
Chemistry
Marks: 50
(Chemical kinetics)
NAME OF THE STUDENT:- \qquad DATE:-

INSTRUCTION - ATTEMPT ALL QUESTIONS

Q.1. For the chemical reaction,
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$ the correct options is
(a) $3 \frac{d\left[\mathrm{H}_{2}\right]}{d t}=2 \frac{d\left[\mathrm{NH}_{3}\right]}{d t}$
(b)
(c) $-\frac{d \mathrm{~N}_{2} d t}{d t}=2 \frac{2}{d\left[\mathrm{NH}_{3}\right]}$
$d t$
(d) $-\frac{d\left[\mathrm{~N}_{2}\right]}{d t}=\frac{1}{2} \frac{d\left[\mathrm{NH}_{3}\right]}{d t}$
Q.2. The rate of the reaction: $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ can be written in three ways.
$\frac{-d\left[N_{2} O_{5}\right]}{d t}=k\left[\begin{array}{ll}N_{2} & O_{5}\end{array}\right] \quad$ 'r $^{\prime} \quad \frac{-d\left[\mathrm{NO}_{2}\right]}{d t}=k^{\prime}\left[N_{2} O_{5}\right] ; \quad \frac{d\left[O_{2}\right]}{d t}=k^{\prime \prime}\left[N_{2} O_{5}\right]$
The relationship between k and k^{\prime} and between k and k " are
(a) $\mathrm{K}^{\prime}=2 \mathrm{k}, \mathrm{K}^{\prime \prime}=\mathrm{k}$
(b) $k^{\prime}=2 k, k^{\prime \prime}=k / 2$
(c) $\mathrm{k}^{\prime}=2 \mathrm{k}, \mathrm{k}^{\prime \prime}=2 \mathrm{k}$
(d) $\mathrm{k}^{\prime}=\mathrm{k}, \mathrm{k}^{\prime \prime}=\mathrm{k}$
Q.3. For the reaction $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})}$ the value of rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$ is given as $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. The rate of formation of NO_{2} and O_{2} is given respectively as:
(a) $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ and $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
(b) $1.25 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ and $3.125 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
(c) $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ and $3.125 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
(d) $1.25 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ and $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
Q.4. For the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$, if $\frac{d\left[\mathrm{NH}_{3}\right]}{d t}=2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, the value of $\frac{-d\left[\mathrm{H}_{2}\right]}{d t}$ would be
(a) $4 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
(b) $6 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
(c) $1 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
(d) $3 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
Q.5. In the reaction

$$
\mathrm{BrO}_{3(\mathrm{mq)}}+5 \mathrm{Br}_{(\mathrm{mq})}+6 \mathrm{H}_{(\mathrm{aq})}^{+}-3 \mathrm{Br}_{2()}+3 \mathrm{H}_{2(\eta)}^{\mathrm{O}}
$$

The rate of appearance of bromine $\left(\mathrm{Br}_{2}\right)$ is related to rate of disappearance of bromide ions as
(a) $\frac{d\left[\mathrm{Br}_{2}\right]}{d t}=-\frac{5}{3} \frac{d\left[\mathrm{Br}^{-}\right]}{d t}$
(b) $\frac{d\left[\mathrm{Br}_{2}\right]}{d t}=\frac{5}{3} \frac{d\left[\mathrm{Br}^{-}\right]}{d t}$
(c) $\frac{d\left[\mathrm{Br}_{2}\right]}{d t}=\frac{3 d\left[\mathrm{Br}^{-}\right]}{5} \frac{d t}{d t}$
(d) $\frac{d\left[\mathrm{Br}_{2}\right]}{d t}=-\frac{3 d\left[\mathrm{Br}^{-}\right]}{5} \frac{d t}{d t}$
Q.6. Consider the reaction :
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
The equality relationship between

$$
\frac{d\left[\mathrm{NH}_{3}\right]}{d t} \text { and }-\frac{d\left[\mathrm{H}_{2}\right]}{d t} \text { is }
$$

(a) $\frac{d\left[\mathrm{NH}_{3}\right]}{d d t}=-\frac{d\left[\mathrm{H}_{2}\right]}{d t}$
(b) $\frac{\left[\mathrm{NH}_{3}\right]}{d t}=-\frac{1}{3} \frac{d\left[\mathrm{H}_{2}\right]}{d t}$
(c) $+\frac{d\left[\mathrm{NH}_{3}\right]}{d t}=-\frac{2}{3} \frac{d\left[\mathrm{H}_{2}\right]}{d t}$
$d\left[\mathrm{NH}_{3}\right] \quad 3 d\left[\mathrm{H}_{2}\right]$
(d) $+\overline{d t}=-\frac{-}{2 d t}$
Q.7. For the reaction, $2 A+B \rightarrow 3 C+D$, which of the following does not express the reaction rate?
(a) $-\frac{d[A]}{2 d t}$
(b) $-\frac{d[C]}{3 d t}$
(c) $-\frac{d[B]}{d t}$
(d) $\frac{d[D]}{d t}$
Q.8. $\quad 3 A \rightarrow 2 B$, rate of reaction $\frac{+d[B]}{d t}$ is equal to
(a) $-\frac{3 d[A]}{2 d t}$
(b) $-\frac{2 d[A]}{3 d t}$
(c) $-\frac{1 d[A]}{3 d t}$
(d) $+2 \frac{d[A]}{d t}$
Q.9. For the reaction
$\mathrm{H}^{+}+\mathrm{BrO}_{3}+3 \mathrm{Br}^{-}----5 \mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}$
which of the following relations correctly represents the consumption and formation of products?
(a) $\frac{d[B r-]}{d t}=-\frac{3 d\left[B r_{2}\right]}{5 d t}$
(b) $\frac{d[B r-]}{d t}=-\frac{3 d\left[B r_{2}\right]}{5 d t}$
(c) $\frac{d[B r-]}{d t}=-\frac{5 d\left[B r_{2}\right]}{3 d t}$
(d) $\frac{d[B r-]}{d t}=-\frac{5 d\left[B r_{2}\right]}{3 d t}$
Q.10. For the reaction $\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} 2 \mathrm{H}_{(\mathrm{g})}$, the rate of reaction is expressed as
(a) $\frac{\Delta\left[\mathrm{H}_{2}\right]}{\Delta t}=\frac{1 \Delta\left[\mathrm{I}_{2}\right]}{2 \Delta t}=-\frac{\Delta[\mathrm{HI}]}{\Delta t}$
(b) $-\frac{\Delta\left[\mathbf{I}_{2}\right]}{\Delta t}=-\frac{\Delta\left[\mathrm{H}_{2}\right]}{\Delta t}=\frac{1 \Delta[\mathrm{HI}]}{2 \mathrm{\Delta t}}$
(c) $\frac{\Delta\left[\mathrm{I}_{2}\right]}{\Delta t}=\frac{\Delta\left[\mathrm{H}_{2}\right]}{\Delta t}=\frac{\Delta[\mathrm{HI}]}{2 \Delta t}$
(d) none of these.

