\qquad DATE:-/...../.
\qquad

* INSTRUCTION:- ATTEMT ALL QUESTION.

Q1. Which of the following pairs of compounds is isoelectronic and isostructural?
(a) $\mathrm{Tel}_{2}, \mathrm{XeF}_{2}$
(b) $\mathrm{IBr}_{2}^{-}, \mathrm{XeF}_{2}$
(c) $\mathrm{IF}_{3}, \mathrm{XeF}_{2}$
(d) $\mathrm{BeCl}_{2}, \mathrm{XeF}_{2}$

Q2. The species, having bond angles of 120° is:
(a) ClF_{3}
(b) NCl_{3}
(c) BCl_{3}
(d) PH_{3}

Q3. In the structure of ClF_{3}, the number of lone pairs of electrons on central atom ' Cl^{\prime} ' is .
[2018]
(a) one
(b) two
(c) four
(d) three

Q4. Which one is the electron deficient compound?
(a) ICI
(b) NH_{3}
(c) BCl_{3}
(d) PCl_{3}

Q5. PCl_{5} exist, but NCL_{5} does not exist because
(a) Nitrogen has no vacant 2-d orbital
(b) NCL_{5} is unstable
(C) N -atom is much smaller than p
(d) Nitrogen is highly inert

Q6. Among the following species identify the isostructural pairs.
$\mathrm{NF}_{3}, \mathrm{NO}_{3}^{-}, \mathrm{BF}_{3} \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{HN}_{3}$
(a) $\left[\mathrm{NF}_{3}, \mathrm{NO}_{3}^{-}\right]$and $\left[\mathrm{BF}_{3} \mathrm{H}_{3} \mathrm{O}^{+}\right]$
(b) $\left[\mathrm{NF}_{3}, \mathrm{HN}_{3}\right]$ and $\left[\mathrm{NO}_{3}^{-} \mathrm{BF}_{3}\right]$
(C) $\left[\mathrm{NF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}\right]$
(d) $\left[\mathrm{NF}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{HN}_{3}, \mathrm{BF}_{3}\right]$

Q7. Number of bonds in SO_{2}
(a) Two σ and two π
(b) Two σ and one π
(C) Two σ, two π and one lone pair
(d) None of these

Q8. In an octahedral structure, the pair of d orbitals involved in $d^{2} \boldsymbol{s} \boldsymbol{p}^{3}$ hybridization is.
(a) $d_{x^{2}}, d_{x z}$
(b) $d_{x y}, d_{y z}$
(c) $d_{x^{2}-y^{2}} d_{z^{2}}$
(d) $d_{x z}, d_{x^{2}-y^{2}}$

Q9. Among the compounds, $\mathrm{BF}_{3}, \mathrm{NCL}_{3}, \mathrm{H}_{2} \mathrm{~S}$, and BeCl_{2}, identify the ones in which the central atom has the same type of hybridisation
(a) BF_{3} and NCL_{3}
(b) $\mathrm{H}_{2} \mathrm{~S}$ and BeCl_{2}
(C) NCl_{3} and $\mathrm{H}_{2} \mathrm{~S}$
(d) NCl_{3} and BeCl_{2}

Q10. The molecule of CO_{2} has 180° bond angle. It can be explained on the basis of.
(a) $s p^{3}$ hybridisation
(b) $s p^{2}$ hybridisation
(C) $s p$ hybridisation
(d) $d^{2} s p 3$ hybridization

