IIT-JEE / NEET / FOUNDATION (IX &X) | Time: 3 hours | <u>SUBJECT – CHEMIS</u> | <u>TRY (NEET II1</u> | <u>-JEE)</u> № | 1arks: 50 | |---|---|--|----------------------------|-----------------| | | (Chemical Bonding & | Molecular Structu | re) | | | NAME OF STUDENT: | | | DATE:/ | / | | <u> </u> | STRUCTION:- ATTEMT A | LL QUESTION. | | | | Q1. Which of the | following pairs of compour | nds is isoelectronic | and isostructura | nl? [2017] | | (a) Tel ₂ , XeF ₂ | (b) $\operatorname{IB}r_2^-$, $\operatorname{XeF_2}$ | (c) IF ₃ , XeF ₂ | (d) BeCl ₂ , Xe | eF ₂ | | Q2. The species, having bond angles of 120° is: | | | | [2017] | | (a) CIF ₃ | (b) NCl ₃ | (c) BCl ₃ | (d) PH ₃ | | | Q3. In the structure of CIF ₃ , the number of lone pairs of electrons on central atom 'Cl' is . [2018] | | | | | | (a) one | (b) two | (c) four | (d) three | | | Q4. Which one is the electron deficient compound? | | | | [2002] | | (a) ICI | (b) NH ₃ | (c) BCl ₃ | (d) PCI ₃ | | | Q5. PCl ₅ exist, but | NCL ₅ does not exist becau | se | | | | (a) Nitrogen has no vacant 2-d orbital | | (b) NCL ₅ is unstable | | | | (C) N-atom is much smaller than p | | (d) Nitrogen is highly inert | | | MARGSHREE CLASSES DELHI FOR IIT-JEE /PMT(NEET) / FOUNDATION CONT: -01142603337, 8527672622, 9711334982 VISIT US: <u>www.margshree.com</u> / www.margshree.org Q6. Among the following species identify the isostructural pairs. NF₃, N $$O_3^-$$, BF₃ H₃O $^+$, HN₃ (a) [NF₃, N O_3^-] and [BF₃H₃O $^+$] (b) [NF₃, HN₃] and [N O_3^- BF₃] (C) $[NF_3, H_3O^+]$ and $[NO_3^-, BF_3]$ (d) $[NF_3, H_3O^{\dagger}]$ and $[HN_3, BF_3]$ - Q7. Number of bonds in SO₂ - (a) Two σ and two π - (b) Two σ and one π - (C) Two σ , two π and one lone pair - (d) None of these - Q8. In an octahedral structure, the pair of d orbitals involved in d^2sp^3 hybridization is. - (a) d_{x^2} , d_{xz} (b) d_{xy} , d_{yz} (c) $d_{x^2-y^2}$, d_{z^2} (d) d_{xz} , $d_{x^2-y^2}$ - Q9. Among the compounds, BF₃, NCL₃, H₂S, and BeCl₂, identify the ones in which the central atom has the same type of hybridisation - (a) BF₃ and NCL₃ (b) H₂S and BeCl₂ (C) NCl₃ and H₂S - (d) NCl₃ and BeCl₂ - Q10. The molecule of CO₂ has 180° bond angle. It can be explained on the basis of. - (a) sp³ hybridisation (b) sp^2 hybridisation (C) sp hybridisation (d) d^2sp3 hybridization MARGSHREE CLASSES DELHI FOR IIT-JEE /PMT(NEET) / FOUNDATION CONT: -01142603337, 8527672622, 9711334982 VISIT US: www.margshree.org