IIT-JEE / NEET / FOUNDATION (IX &X)

Time: 3 hours

SUBJECT - CHEMISTRY (NEET|IIT-JEE)

Marks: 50

Chemical kinetics [Daily Practice Paper]

(D P P)

NAME OF STUDENT:-

DATE:-/...../.....

❖ INSTRUCTION:- ATTEMT ALL QUESTION.

- Q1. For a reaction of order n, the unit of the rate constant is : [July 27,2021 (I)]
 - (a) $mol^{1-n} L^{1-N} s$

(b) $\text{mol}^{1-n} L^{2n} s^{-1}$

(C) $mol^{1-n} L^{n-1} s^{-1}$

- (d) $mol^{1-n} L^{1-n} s^{-1}$
- Q2. For the reaction 2A + 3B + $\frac{3}{2}$ C \rightarrow 3P, which statement is correct ? [Sep.03,2020 (II)]
 - (a) $\frac{dn_A}{dt} = \frac{3}{2} \frac{dn_B}{dt} = \frac{3}{4} \frac{dn_C}{dt}$

(b) $\frac{dn_A}{dt} = \frac{dn_B}{dt} = \frac{dn_C}{dt}$

(C) $\frac{dn_A}{dt} = \frac{2}{3} \frac{dn_B}{dt} = \frac{4}{3} \frac{dn_C}{dt}$

- (d) $\frac{dn_A}{dt} = \frac{2}{3} \frac{dn_B}{dt} = \frac{3}{4} \frac{dn_C}{dt}$
- Q3. The given plots represents the variation of the concentration of a reactant R with time for two different reactions (i) and (ii). The respective orders of the reactions are:

[April 9,2019 (I)]

(a) 1,0

(b) 1,1

(c) 0,1

(d) 0,2

MARGSHREE CLASSES DELHI FOR IIT-JEE /PMT(NEET) / FOUNDATION

CONT: -01142603337, 8527672622, 9711334982

VISIT US: <u>www.margshree.com</u> / www.margshree.org

Q4. for the reaction

 $2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$ the observed rate expression is, rate = $k_f[NO]^2$ [H₂]. The rate expression for the reverse reaction is: [Jan.07,2020 (II)]

(a) $K_b[N_2][H_2O]^2$

(b) $K_b[N_2][H_2O]^2/[NO]$

(C) $K_b[N_2][H_2O]$

(d) $K_b[N_2][H_2O]^2/[H_2]$

Q5. In the following reaction : $xA \rightarrow yB$

$$log_{10} \left[-\frac{\text{d[A]}}{\text{dt}} \right] = log_{10} \left[\frac{\text{d[B]}}{\text{dt}} \right] + \ 0.3010$$

'A' and 'B' respectively can be:

[April 12, 2019 (I)]

(a) n- Butane and Iso-butane

(b) C₂H₂ and C₆H₆

(C) C_2H_4 and C_4H_8

- (d) N₂O₄ and NO₂
- Q6. NO_2 required for a reaction is produced by the decomposition of N_2O_5 in CCl_4 as per the equation, $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$. the initial concentration of N_2O_5 is 3.00 mol L^{-1} and it is 2.75 mol L^{-1} after 30 minutes. The rate of formation of NO_2 is : [April 12, 2019 (II)]
 - (a) $4.167 \times 10^{-3} \text{ mol L}^{-1} \text{ min}^{-1}$

(b) 1.667× $10^{-2} \text{ mol } L^{-1} \text{ min}^{-1}$

(C) $8.333 \times 10^{-3} \text{ mol L}^{-1} \text{ min}^{-1}$

- (d) $2.083 \times 10^{-3} \text{ mol L}^{-1} \text{ min}^{-1}$
- Q7. For the reaction $2A + B \rightarrow C$, the values of initial rate at different reactant concentrations are given in the table below. The rate law for the reaction is : [April 8, 2019 (I)]

[A](mol L-1)	[B](mol L-1)	Initial Rate(mol L-1 s-1)
0.05	0.05	0.045
0.10	0.05	0.090
0.20	0.10	0.72

(a) Rate= $k[A][B]^2$

(b) Rate= $k[A]^2[B]^2$

(C) Rate= k[A][B]

(d) Rate = $k[A]^2[B]$

MARGSHREE CLASSES DELHI FOR IIT-JEE /PMT(NEET) / FOUNDATION

CONT: -01142603337, 8527672622, 9711334982

VISIT US: <u>www.margshree.com</u> / www.margshree.org

Q8.	For a reaction scheme	$A \xrightarrow{\kappa_1} B \xrightarrow{\kappa_2} C$, if the rate of	formation of B is set to be
	Zero then the concentration of B is given by:		[April 8, 2019 (II)]

(a) $(k_1 - k_2)$ [A]

(b) $k_1 k_2 [A]$

(C) $(k_1 + k_2)$ [A]

- (d) $\left(\frac{k_1}{k_2}\right)$ [A]
- Q9. The rate law for the reaction below is given by the expression k [A][B] $A + B \rightarrow Product$

If the concentration of B is increased from 0.1 to 0.3 mole, keeping the value of A at [Online April 10, 2016] 0.1 mole, the rate constant will be:

- (a) 3*k*
- (b) 9k
- (c) k/3

- (d) k
- Q10. A + 2B \rightarrow C, the rate equation for this reaction is given as Rate = k[A][B]. If the concentration of A is kept the same but that of B is doubled what will happen to the rate itself? [Online April 11, 2015]
 - (a) halved
- (b) the same
- (c) doubled
- (d) quadrupled

MARGSHREE CLASSES DELHI FOR IIT-JEE /PMT(NEET) / FOUNDATION

VISIT US: <u>www.margshree.com</u> / www.margshree.org