INSTRUCTION:- ATTEMT ALL QUESTION.

Q1. For a reaction of order n, the unit of the rate constant is :
[July 27,2021 (I)]
(a) $\mathrm{mol}^{1-\mathrm{n}} \mathrm{L}^{1-\mathrm{N}} \mathrm{s}$
(b) $\mathbf{m o l}^{1-\mathrm{n}} \mathrm{L}^{\mathbf{2 n}} \mathrm{s}^{\mathbf{- 1}}$
(C) $\mathbf{m o l}^{\mathbf{1 - n}} \mathbf{L}^{\mathrm{n}-\mathbf{1}} \mathbf{s}^{\mathbf{- 1}}$
(d) $\mathbf{m o l}^{\mathbf{1 - n}} \mathbf{L}^{\mathbf{1 - n}} \mathbf{s}^{\mathbf{- 1}}$

Q2. For the reaction $2 \mathrm{~A}+3 \mathrm{~B}+\frac{3}{2} \mathrm{C} \rightarrow 3 \mathrm{P}$, which statement is correct ? [Sep.03,2020 (II)]
(a) $\frac{\mathrm{dn}_{\mathrm{A}}}{\mathrm{dt}}=\frac{3}{2} \frac{\mathrm{dn}_{\mathrm{B}}}{\mathrm{dt}}=\frac{3}{4} \frac{\mathrm{dn}_{\mathrm{C}}}{\mathrm{dt}}$
(b) $\frac{\mathrm{dn}_{\mathrm{A}}}{\mathrm{dt}}=\frac{\mathrm{dn}_{\mathrm{B}}}{\mathrm{dt}}=\frac{\mathrm{dn}_{\mathrm{C}}}{\mathrm{dt}}$
(C) $\frac{\mathrm{dn}_{\mathrm{A}}}{\mathrm{dt}}=\frac{2}{3} \frac{\mathrm{dn}_{\mathrm{B}}}{\mathrm{dt}}=\frac{4}{3} \frac{\mathrm{dn}_{\mathrm{C}}}{\mathrm{dt}}$
(d) $\frac{\mathrm{dn}_{\mathrm{A}}}{\mathrm{dt}}=\frac{2}{3} \frac{\mathrm{dn}_{\mathrm{B}}}{\mathrm{dt}}=\frac{3}{4} \frac{\mathrm{dn}_{\mathrm{C}}}{\mathrm{dt}}$

Q3. The given plots represents the variation of the concentration of a reactant R with time for two different reactions (i) and (ii). The respective orders of the reactions are:

[April 9,2019 (I)]
(a) 1,0
(b) 1,1
(c) 0,1
(d) 0,2

Q4. for the reaction
$\mathbf{2 H}(\mathrm{g})+\mathbf{2 N O}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathbf{2 \mathrm { H } _ { 2 } \mathrm { O } (\mathrm { g })}$ the observed rate expression is, rate $=\mathrm{k}_{\mathrm{f}}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]$. The rate expression for the reverse reaction is:
[Jan.07,2020 (II)]
(a) $\mathrm{K}_{\mathrm{b}}\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$
(b) $\mathrm{K}_{\mathrm{b}}\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2} /[\mathrm{NO}]$
(C) $\mathrm{K}_{\mathrm{b}}\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
(d) $\mathrm{K}_{\mathrm{b}}\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2 /}\left[\mathrm{H}_{2}\right]$

Q5. In the following reaction : $\mathrm{xA} \rightarrow \mathrm{yB}$

$$
\log _{10}\left[-\frac{d[A]}{d t}\right]=\log _{10}\left[\frac{d[B]}{d t}\right]+0.3010
$$

' A ' and ' B ' respectively can be:
[April 12, 2019 (I)]
(a) n-Butane and Iso-butane
(b) $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$
(C) $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{4} \mathrm{H}_{8}$
(d) $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2}

Q6. NO_{2} required for a reaction is produced by the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in CCl_{4} as per the equation,

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) .
$$

the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $3.00 \mathrm{~mol} \mathrm{~L}^{-1}$ and it is $2.75 \mathrm{~mol} \mathrm{~L}^{-1}$ after 30 minutes. The rate of formation of NO_{2} is :
[April 12, 2019 (II)]
(a) $4.167 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
(b) $1.667 \times \mathbf{1 0}^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
(C) $8.333 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
(d) $2.083 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$

Q7. For the reaction $2 \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}$, the values of initial rate at different reactant concentrations are given in the table below. The rate law for the reaction is : [April 8, 2019 (I)]

$[A](\mathrm{mol} \mathrm{L-1})$	$[B](\mathrm{mol} \mathrm{L-1)}$	Initial Rate(mol L-1 s-1)
0.05	0.05	0.045
0.10	0.05	0.090
0.20	0.10	0.72

(a) Rate $=k[A][B]^{2}$
(b) Rate $=k[A]^{2}[B]^{2}$
(C) Rate $=k[A][B]$
(d) Rate $=k[A]^{2}[B]$

Q8. For a reaction scheme $A \xrightarrow{\kappa_{1}} B \xrightarrow{\kappa_{2}} C$, if the rate of formation of B is set to be Zero then the concentration of B is given by :
[April 8, 2019 (II)]
(a) $\left(k_{1}-k_{2}\right)[A]$
(b) $k_{1} k_{2}[\mathrm{~A}]$
(C) $\left(k_{1}+k_{2}\right)[\mathrm{A}]$
(d) $\left(\frac{k_{1}}{k_{2}}\right)[\mathrm{A}]$

Q9. The rate law for the reaction below is given by the expression $k[A][B]$

$$
\text { A }+\mathrm{B} \rightarrow \text { Product }
$$

If the concentration of B is increased from 0.1 to 0.3 mole, keeping the value of A at 0.1 mole, the rate constant will be:
[Online April 10, 2016]
(a) $3 k$
(b) $9 k$
(c) $k / 3$
(d) k
$Q 10$. $A+2 B \rightarrow C$, the rate equation for this reaction is given as Rate $=k[A][B]$. If the concentration of A is kept the same but that of B is doubled what will happen to the rate itself?
[Online April 11, 2015]
(a) halved
(b) the same
(c) doubled
(d) quadrupled

