MARGSHREE CLASSES

IIT-JEE / NEET / FOUNDATION (IX &X)

Time: 3 hours

SUBJECT - CHEMISTRY (NEET | IIT-JEE)

Marks: 50

Chemical kinetics [Daily Practice Paper]

(D P P)

NAME OF STUDENT:	DATE://
------------------	---------

*** INSTRUCTION:- ATTEMT ALL QUESTION.**

- Q1. For a reaction of order n, the unit of the rate constant is: [July 27,2021 (I)]
 - (a) $mol^{1-n} L^{1-N} s$

(b) $mol^{1-n} L^{2n} s^{-1}$

(C) $mol^{1-n}L^{n-1}s^{-1}$

- (d) $mol^{1-n} L^{1-n} s^{-1}$
- Q2. For the reaction 2A + 3B + $\frac{3}{2}$ C \rightarrow 3P, which statement is correct ? [Sep.03,2020 (II)]
 - (a) $\frac{dn_A}{dt} = \frac{3}{2} \frac{dn_B}{dt} = \frac{3}{4} \frac{dn_C}{dt}$ $\frac{dn_A}{dt} = \frac{dn_B}{dt} = \frac{dn_C}{dt}$ (b)
 - (C) $\frac{dn_A}{dt} = \frac{2}{3} \frac{dn_B}{dt} = \frac{4}{3} \frac{dn_C}{dt}$ $\frac{dn_A}{dt} = \frac{2}{3} \frac{dn_B}{dt} = \frac{3}{4} \frac{dn_C}{dt}$ (d)
- Q3. The given plots represents the variation of the concentration of a reactant R with time for two different reactions (i) and (ii). The respective orders of the reactions are:

(i)

MARGSHREE CLASSESIn [R]

CONT: -01142603335

VISIT US: www.mai

[April 9,2019 (I)]

- (a) 1,0
- (b) 1,1
- (c) 0,1
- (d) 0,2

Q4. for the reaction

 $2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$ the observed rate expression is, rate = $k_f[NO]^2$ [H₂]. The rate expression for the reverse reaction is: [Jan.07,2020 (II)]

(a) $K_b[N_2][H_2O]^2$

(b) $K_b[N_2][H_2O]^2/[NO]$

(C) $K_b[N_2][H_2O]$

(d) $K_b[N_2][H_2O]^2/[H_2]$

Q5. In the following reaction : $xA \rightarrow yB$

$$\left[-\frac{d[A]}{dt} \right] = \left[\frac{d[B]}{dt} \right] + 0.3010$$

'A' and 'B' respectively can be:

[April 12, 2019 (I)]

(a) n- Butane and Iso-butane

(b) C_2H_2 and C_6H_6

(C) C_2H_4 and C_4H_8

- (d) N₂O₄ and NO₂
- Q6. NO_2 required for a reaction is produced by the decomposition of N_2O_5 in CCl_4 as per the equation, $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g).$

the initial concentration of N_2O_5 is 3.00 mol L^{-1} and it is 2.75 mol L^{-1} after 30 minutes. The rate of formation of NO_2 is : [April 12, 2019 (II)]

(a) 4.167 \times 10^{-3} mol L^{-1} min^{-1}

(b) 1.667× 10^{-2} mol L^{-1} min^{-1}

(C) 8.333 \times 10^{-3} mol L^{-1} min^{-1}

- (d) $2.083 \times 10^{-3} \text{ mol } L^{-1} min^{-1}$
- Q7. For the reaction $2A + B \rightarrow C$, the values of initial rate at different reactant concentrations are given in the table below. The rate law for the reaction is : [April 8, 2019 (I)]

	[A](mol L-1)	[B](mol L-1)	Initial Rate(mol L-1 s-1)
	0.05	0.05	0.045
	0.10	0.05	0.090
DI	0.20	0.10	0.72

MARGSHREE CLASSES DELHI FO

CONT: -01142603337, 8527672622, 9711334982

VISIT US: <u>www.margshree.com</u> / www.margshree.org

	(a) Rate= $k[A][B]^2$		(b)	$Rate = k[A]^2[B]^2$
	(C) Rate= k[A][B]		• •	$Rate = k[A]^2[B]$
Q8.	For a reaction scheme	$A \xrightarrow{K_1} B \xrightarrow{K_2} C$, if the r	ate o	of formation of B is set to be
`	Zero then the concentr			[April 8, 2019 (II)]
	(a) ($k_{1-} \ k_{2}$) [A]		(b)	k ₁ k ₂ [A]
	(C) $(k_{1+} k_2)$ [A]		(d)	$\left(\frac{k_1}{k_2}\right)[A]$
Q9.	The rate law for the rea	ction below is given by th	ne ex	pression k [A][B]
•		$A + B \rightarrow Product$		
		A D / Ploduct		

(a) 3k (b) 9k (c) k/3 (d) k

Q10. A + 2B → C, the rate equation for this reaction is given as Rate = k[A][B].

If the concentration of A is kept the same but that of B is doubled what will happen to the rate itself?

[Online April 11, 2015]

If the concentration of B is increased from 0.1 to 0.3 mole, keeping the value of A at

[Online April 10, 2016]

(a) halved (b) the same (c) doubled (d) quadrupled

MARGSHREE CLASSES DELHI FOR IIT-JEE /PMT(NEET) / FOUNDATION CONT: -01142603337, 8527672622, 9711334982

0.1 mole, the rate constant will be:

VISIT US: <u>www.margshree.com</u> / www.margshree.org